Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Jun 1;64(11):3981-6.

P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells.

Author information

  • 1Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009, USA.

Erratum in

  • Cancer Res. 2008 Dec 1;68(23):10005.

Abstract

Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody directed against HER-2. The objective response rate to trastuzumab monotherapy is 12-34% for a median duration of 9 months, by which point most patients become resistant to treatment. We created two trastuzumab-resistant (TR) pools from the SKBR3 HER-2-overexpressing breast cancer cell line to study the mechanisms by which breast cancer cells escape trastuzumab-mediated growth inhibition. Both pools maintained her-2 gene amplification and protein overexpression. Resistant cells demonstrated a higher S-phase fraction by flow cytometry and a faster doubling time of 24-36 h compared with 72 h for parental cells. The cyclin-dependent kinase inhibitor p27(kip1) was decreased in TR cells, and cyclin-dependent kinase 2 activity was increased. Importantly, exogenous addition of p27(kip1) increased trastuzumab sensitivity. Additionally, resistant cells displayed heightened sensitivity to the proteasome inhibitor MG132, which induced p27(kip1) expression. Thus, we propose that trastuzumab resistance may be associated with decreased p27(kip1) levels and may be susceptible to treatments that induce p27(kip1) expression.

PMID:
15173011
DOI:
10.1158/0008-5472.CAN-03-3900
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center