Send to

Choose Destination
Int J Food Microbiol. 2004 Jun 15;93(3):281-6.

Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress.

Author information

Department of Food Science and Technology, The University of Georgia, 1109 Experiment Street, Griffin, GA 30223-1797, USA.


Many strains of Escherichia coli O157:H7 produce, under stress, an exopolysaccharide (EPS) comprised of colanic acid (CA) and form mucoid colonies on minimal glucose agar (MGA) at ambient temperature. Previous research conducted in our laboratory involving a CA-proficient (W6-13) and a CA-deficient (M4020; wcaD::Ekan(r)) strain of E. coli O157:H7 revealed that CA conferred acid and heat tolerance to E. coli O157:H7. Cells covered with CA were more persistent during acid (pH 4.5, 5.5, and 6.5) and heat (55 and 60 degrees C) treatment. The goal of this research was to study the effect of CA on the fate of E. coli O157:H7 under osmotic and oxidative stress. Cells of W6-13 and M4020 were exposed to various concentrations of NaCl (0.5, 1.5, and 2.5 M) and H2O2 (0, 10, and 20 mM) in minimal glucose broth (MGB) at 22 degrees C. Viable counts of E. coli O157:H7 were determined within 48 h of the osmotic stress and 3 h of the oxidative stress. The results suggest that cells of E. coli O157:H7 deficient in CA production are more susceptible than its wild-type parent to NaCl ( P< 0.05) and H2O2 (P< or = 0.05). This indicates that CA plays a role in protecting E. coli O157:H7 from osmotic and oxidative stress.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center