Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jul 30;279(31):32941-9. Epub 2004 May 25.

Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells.

Author information

Molecular Oncology Laboratory, Department of Surgery, and Committe on Genetics, University of Chicago, IL 60637, USA.


Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center