Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Biotechnol. 2004 Jun;22(6):311-8.

Taming plastids for a green future.

Author information

1
Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der Pflanzen, Hindenburgplatz 55, D-48143 Münster, Germany.

Abstract

Plant genetic engineering will probably contribute to the required continued increase in agricultural productivity during the coming decades, and moreover, plants can potentially provide inexpensive production platforms for pharmaceuticals and nutraceuticals. With the advent of technologies for altering the genetic information inside chloroplasts, a new attractive target for genetic engineering has become available to biotechnologists. Potential advantages over conventional nuclear transformation include high transgene expression levels and increased biosafety because of maternal organelle inheritance in most crops. This review summarizes the state of the art in chloroplast genetic engineering and describes how reverse genetics approaches enhance our understanding of photosynthesis and other important chloroplast functions. Furthermore, promising strategies by which chloroplast genetic engineering might contribute to the successful modification of plant metabolism are discussed.

PMID:
15158061
DOI:
10.1016/j.tibtech.2004.03.005
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center