Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 May 15;64(10):3414-27.

Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus.

Author information

  • 1Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. cmaley@alum.mit.edu

Abstract

Neoplastic progression is an evolutionary process characterized by genomic instability and waves of clonal expansions carrying genetic and epigenetic lesions to fixation (100% of the cell population). However, an evolutionarily neutral lesion may also reach fixation if it spreads as a hitchhiker on a selective sweep. We sought to distinguish advantageous lesions from hitchhikers in the premalignant condition Barrett's esophagus. Patients (211) had biopsies taken at 2-cm intervals in their Barrett's segments. Purified epithelial cells were assayed for loss of heterozygosity and microsatellite shifts on chromosomes 9 and 17, sequence mutations in CDKN2A/MTS1/INK4a (p16) and TP53 (p53), and methylation of the p16 promoter. We measured the expanse of a lesion in a Barrett's segment as the proportion of proliferating cells that carried a lesion in that locus. We then selected the lesion having expanses >90% in the greatest number of patients as our first putative advantageous lesion. We filtered out hitchhikers by removing all expanses of other lesions that did not occur independent of the advantageous lesion. The entire process was repeated on the remaining expanses to identify additional advantageous lesions. p16 loss of heterozygosity, promoter methylation, and sequence mutations have strong, independent, advantageous effects on Barrett's cells early in progression. Second lesions in p16 and p53 are associated with later selective sweeps. Virtually all of the other lesion expansions, including microsatellite shifts, could be explained as hitchhikers on p16 lesion clonal expansions. These techniques can be applied to any neoplasm.

PMID:
15150093
DOI:
10.1158/0008-5472.CAN-03-3249
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center