Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 May 15;64(10):3386-90.

Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guérin-induced antitumor activity.

Author information

Department of Urology, University of Iowa, Iowa City, Iowa 52242, USA.


Mycobacterium bovis Bacillus Calmette-Guérin (BCG) use in the treatment of bladder cancer was first reported in 1976, but the mechanism of the induced antitumor activity has still not been fully explained. BCG is a potent immunostimulant, normally producing a Th1 cytokine response, including IFN. Recent studies have shown CpG oligodeoxynucleotide induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression via IFN production. Given that Mycobacterial DNA contains high amounts of CpG motifs, we hypothesized that BCG's antitumor properties are akin to CpG oligodeoxynucleotide, where the cytokine response to BCG induces TRAIL up-regulation. Using ELISA, urine IFN-gamma, and TRAIL levels were initially undetectable in BCG therapy patients but were high after later induction treatments. More importantly, patients that responded to BCG therapy had significantly higher urine TRAIL levels, which killed bladder tumor cells in vitro versus nonresponders. Flow cytometry of fresh urine revealed TRAIL-expressing neutrophils. Given these data, we propose TRAIL plays a role in BCG-induced antitumor effects.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center