Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2004 Jun 11;318(4):977-82.

Post-transcriptional regulation of glucose transporter-1 by an AU-rich element in the 3'UTR and by hnRNP A2.

Author information

1
Veterans Administration Research Service, White River Junction, VT 05009-0001, USA.

Abstract

Glucose transporter-1 (GLUT1) mediates uptake of glucose and is up-regulated in some cancers. The amount of this membrane protein is regulated by a post-transcriptional mechanism in which mRNA binding proteins recognize cis-acting elements in the 3'-untranslated (3'UTR) of the mRNA. To identify cis elements in GLUT1 mRNA we introduced 3'UTR sequences into the 3'UTR of the luciferase gene in a reporter construct. A 30 nt adenosine-uridine-rich element ("GLUT1 AURE") inhibited luciferase activity in HEK-293 cells. This inhibitory effect was confirmed by deleting the GLUT1 AURE from a reporter containing the full-length 3'UTR. Deletion of the GLUT1 AURE caused reporter activity to increase. Deletion of a larger fragment ("Bsu" region) containing the GLUT1 AURE increased reporter activity still further, suggesting that there are additional cis elements in the GLUT1 mRNA. The GLUT1 AURE was also active in GBM-T98G glioblastoma cells. Next, we tested the action of a trans-acting factor, hnRNP A2, on GLUT1 gene expression. We show that a cytoplasmic-localizing isoform of hnRNP A2 binds human GLUT1 RNA by gel-shift assay and by UV-crosslinking. Finally, over-expression of the hnRNP A2 isoform inhibited GLUT1 reporter expression in GBM-T98G cells. These results identify the AURE cis element in human GLUT1 mRNA and show that hnRNP A2 acts on GLUT1 mRNA to inhibit expression of GLUT1 in a brain cancer cell line.

PMID:
15147968
DOI:
10.1016/j.bbrc.2004.04.128
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center