Send to

Choose Destination
Endocrinology. 2004 Sep;145(9):4144-53. Epub 2004 May 13.

Genomic structure and characterization of the 5'-flanking region of the human ghrelin gene.

Author information

Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.


Ghrelin, an endogenous ligand for the GH secretagogue receptor, induces GH secretion, food intake, and positive energy balance. Although ghrelin exhibits a variety of hormonal actions, the mechanisms regulating ghrelin expression and secretion remain unclear. To understand regulation of human ghrelin gene expression, we examined the genomic structure of approximately 5,000 bp of the 5'-flanking region of the human ghrelin gene. We performed rapid amplification of cDNA ends to estimate transcriptional start sites, indicating that there are two transcriptional initiation sites within the human ghrelin gene. Both transcripts were equally expressed in the human stomach, whereas the longer transcript was mainly expressed in a human medullary thyroid carcinoma (TT) cell line. Functional analysis using promoter-reporter constructs containing the 5'-flanking region of the gene indicated that the sequence residing within the -349 to -193 region is necessary for human ghrelin promoter function in TT cells. Within this region existed several consensus sequences for a number of transactivating regulatory proteins, including an E-box site. Destruction of this site decreased to 40% of the promoter activity. The upstream region of the promoter has two additional putative E-box sites, and site-directed mutagenesis suggested that these are also involved in promoter activation. Electrophoretic mobility shift assays demonstrated that the upstream stimulatory factor specifically bound to these E-box elements. These results suggest a potential role for upstream stimulatory factor transcription factors in the regulation of human ghrelin expression.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center