Format

Send to

Choose Destination
PLoS Biol. 2004 May;2(5):E128. Epub 2004 May 11.

Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast.

Author information

1
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.

Abstract

Addition of glucose to starved yeast cells elicits a dramatic restructuring of the transcriptional and metabolic state of the cell. While many components of the signaling network responsible for this response have been identified, a comprehensive view of this network is lacking. We have used global analysis of gene expression to assess the roles of the small GTP-binding proteins, Ras2 and Gpa2, in mediating the transcriptional response to glucose. We find that 90% of the transcriptional changes in the cell attendant on glucose addition are recapitulated by activation of Ras2 or Gpa2. In addition, we find that protein kinase A (PKA) mediates all of the Ras2 and Gpa2 transcriptional effects. However, we also find that most of the transcriptional effects of glucose addition to wild-type cells are retained in strains containing a PKA unresponsive to changes in cAMP levels. Thus, most glucose-responsive genes are regulated redundantly by a Ras/PKA-dependent pathway and by one or more PKA-independent pathways. Computational analysis extracted RRPE/PAC as the major response element for Ras and glucose regulation and revealed additional response elements mediating glucose and Ras regulation. These studies provide a paradigm for extracting the topology of signal transduction pathways from expression data.

PMID:
15138498
PMCID:
PMC406390
DOI:
10.1371/journal.pbio.0020128
[Indexed for MEDLINE]
Free PMC Article

Conflict of interest statement

The authors have declared that no conflicts of interest exist.

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center