Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2004 May 19;52(10):2861-5.

Release and activity of allelochemicals from allelopathic rice seedlings.

Author information

1
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. chkong@scau.edu.cn

Abstract

3-Isopropyl-5-acetoxycyclohexene-2-one-1 (1), momilactone B (2), and 5,7,4'-trihydroxy-3',5'-dimethoxyflavone (3) were isolated and identified from an allelopathic rice accession PI312777. These three compounds at low concentrations could inhibit the growth of weeds Echinochloa crusgalli and Cyperus difformis associated with rice, especially mixtures of the compounds had stronger inhibitory activity than did individual compounds. Studies with hydroponic culture, continuous root exudates trapping system (CRETS), and direct resin adsorption methods showed that a total of 7.6 n moles 1, 2, and 3 were exuded from living roots of each seedling into the environment at 10 days after seedlings were transplanted. Furthermore, 1, 2, and 3 were found in the soil growing PI312777 seedlings at day 15 after seedlings emergence and reached a total of 39.5 microg/g soil at day 30. The results indicated that PI 312777 seedlings could release sufficient quantities of 1, 2, and 3 into the environment to act as allelochemicals inhibiting the growth of associated weeds. Investigations on the distribution of 1, 2, and 3 in PI 312777 plant, and its root exudates showed that the levels of 1, 2, and 3 were significantly higher in the shoots and root exudates than in the roots, and only trace 1 was observed in the roots. The results suggest that the roots of rice seedlings are not major site of synthesis or accumulation 1, 2, and 3, but a pathway for their release into the environment. The levels of 1, 2, and 3 in the root exudates were over 2-folds higher under direct resin adsorption than under hydroponic culture and CRETS, and hence, it is the preferred method to collect and identify active allelochemicals in rice exudates in future studies on rice allelopathy.

PMID:
15137826
DOI:
10.1021/jf035467i
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center