Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2004 May 17;43(10):3277-91.

A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex.

Author information

Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, S-106 91 Stockholm, Sweden.


Density functional calculations using the B3LYP functional have been used to study the reaction mechanism of [Fe(Tp(Ph2))BF] (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate; BF = benzoylformate) with dioxygen. This mononuclear non-heme iron(II) complex was recently synthesized, and it proved to be the first biomimetic complex reproducing the dioxygenase activity of alpha-ketoglutarate-dependent enzymes. Moreover, the enthalpy and entropy of activation for this biologically interesting process were derived from kinetic experiments offering a unique possibility for direct comparison of theoretical and experimental data. The results reported here support a mechanism in which oxidative decarboxylation of the keto acid is the rate-limiting step. This oxygen activation process proceeds on the septet potential energy surface through a transition state for a concerted O-O and C-C bond cleavage. In the next step, a high-valent iron-oxo species performs electrophilic attack on the phenyl ring of the Tp(Ph2) ligand leading to an iron(III)-radical sigma-complex. Subsequent proton-coupled electron-transfer yields an iron(II)-phenol intermediate, which can bind dioxygen and reduce it to a superoxide radical. Finally, the protonated superoxide radical leaves the first coordination sphere of the iron(III)-phenolate complex and dismutates to dioxygen and hydrogen peroxide. The calculated activation barrier (enthalpy and entropy) and the overall reaction energy profile agree well with experimental data. A comparison to the enzymatic process, which is suggested to occur on the quintet surface, has been made.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center