Format

Send to

Choose Destination
See comment in PubMed Commons below
Structure. 2004 May;12(5):849-60.

Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.

Author information

1
Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239 USA. schumacm@ohsu.edu

Abstract

Small conductance Ca2+-activated K+ channels (SK channels) are composed of the pore-forming alpha subunit and calmodulin (CaM). CaM binds to a region of the alpha subunit called the CaM binding domain (CaMBD), located intracellular and immediately C-terminal to the inner helix gate, in either the presence or absence of Ca2+. SK gating occurs when Ca2+ binds the N lobe of CaM thereby transmitting the signal to the attached inner helix gate to open. Here we present crystal structures of apoCaM and apoCaM/SK2 CaMBD complex. Several apoCaM crystal forms with multiple (12) packing environments reveal the same EF hand domain-swapped dimer providing potentially new insight into CaM regulation. The apoCaM/SK2 CaMBD structure, combined with our Ca2+/CaM/CaMBD structure suggests that Ca2+ binding induces folding and dimerization of the CaMBD, which causes large CaMBD-CaM C lobe conformational changes, including a >90 degrees rotation of the region of the CaMBD directly connected to the gate.

PMID:
15130477
DOI:
10.1016/j.str.2004.03.017
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center