Format

Send to

Choose Destination
See comment in PubMed Commons below

Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps.

Author information

1
Department of Biochemistry, The August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark. URasmussen@aki.ku.dk

Abstract

The metabolism of mitochondria isolated from five functionally different skeletal muscles is compared. Data for a single ectothermic preparation are also reported. The mitochondria were prepared in yields of 44+/-7% from 50 to 100 mg muscle. The muscle content of mitochondrial protein ranged between 2 and 40 g kg(-1). Twelve specific activities of key enzymes and metabolic systems were determined, 10 of these in functional assays with respiratory measurements. The specific activities of glutamate dehydrogenase, alpha-glycerophosphate dehydrogenase, and exo-NADH oxidase differed considerably among muscle sources. Seven specific activities, including very central reactions, showed low among-muscle variation. The activity of ATP synthesis, for instance, was 1.0-1.3 mmol min(-1) g(-1) mitochondrial protein, 25 degrees C. In vitro data were extrapolated to in vivo conditions of the muscles. The calculated rates of respiration and ATP synthesis were in accordance with reported tissue activities. Pigeon pectoralis mitochondria showed a unique cytochrome spectrum and a respiratory chain activity that might effect simultaneous carbohydrate and fatty acid respiration. In mitochondria from the other muscles, the respiratory chain activity balanced the carbohydrate oxidation capacity. In all muscles, the respiratory capacity exceeds that needed for oxidative phosphorylation. This may secure maximal mitochondrial ATP synthesis during maximal work rates and high cellular [Ca(2+)].

PMID:
15123217
DOI:
10.1016/j.cbpb.2003.11.002
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center