Send to

Choose Destination

Mechanisms contributing to intracellular pH homeostasis in an immortalised human chondrocyte cell line.

Author information

University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.


The maintenance of chondrocyte pH is an important parameter controlling cartilage matrix turnover rates. Previous studies have shown that, to varying degrees, chondrocytes rely on Na(+)/H(+) exchange to regulate pH. HCO(3)(-)-dependent buffering and HCO(3)(-)-dependent acid-extrusion systems seem to play relatively minor roles. This situation may reflect minimal carbonic anhydrase activity in cartilage cells. In the present study, the pH regulation of the human chondrocyte cell line, C-20/A4 has been characterised. Intracellular pH (pH(i)) was measured using the H(+)-sensitive fluoroprobe BCECF. In solutions lacking HCO(3)(-)/CO(2), pH(i) was approximately 7.5, and the recovery from intracellular acidification was predominantly mediated by a Na(+)-dependent, amiloride- and HOE 694-sensitive process. A small additional component which was sensitive to chloro-7-nitrobenz-2-oxa-1,3-diazole, an inhibitor of the V-type H(+)-ATPase, was also apparent. In solutions containing HCO(3)(-)/CO(2), pH(i) was approximately 7.2. Comparison of buffering capacity in the two conditions showed that this variable was not significantly augmented in HCO(3)(-)/CO(2)-containing media. The recovery from intracellular acidification was more rapid in the presence of HCO(3)(-)/CO(2), although under these conditions it was again largely dependent on Na(+) ions and inhibited by amiloride and HOE 694. A small component was inhibited by SITS, although this effect did not reach the level of statistical significance. These findings indicate that HCO(3)(-)-dependent processes play only a minimal role in pH regulation in C-20/A4 chondrocytes. pH regulation instead relies heavily on the Na(+)/H(+) exchanger together with a H(+)-ATPase. The absence of extrinsic (HCO(3)(-)/CO(2)) buffering is likely to reflect the low levels of carbonic anhydrase in these cells. In addition to providing fundamental information about a widely-used cell line, these findings support the contention that the unusual nature of pH regulation in chondrocytes reflects the paucity of carbonic anhydrase activity in these cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center