Send to

Choose Destination
See comment in PubMed Commons below
Bone. 2004 May;34(5):790-8.

On the origin of the toughness of mineralized tissue: microcracking or crack bridging?

Author information

Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.


Two major mechanisms that could potentially be responsible for toughening in mineralized tissues, such as bone and dentin, have been identified-microcracking and crack bridging. While evidence has been reported for both mechanisms, there has been no consensus thus far on which mechanism plays the dominant role in toughening these materials. In the present study, we seek to present definitive experimental evidence supporting crack bridging, rather than microcracking, as the most significant mechanism of toughening in cortical bone and dentin. In vitro fracture toughness experiments were conducted to measure the variation of the fracture resistance with crack extension [resistance-curve (R-curve) behavior] for both materials with special attention paid to changes in the sample compliance. Because these two toughening mechanisms induce opposite effects on the sample compliance, such experiments allow for the definitive determination of the dominant toughening mechanism, which in the present study was found to be crack bridging for microstructurally large crack sizes. The results of this work are of relevance from the perspective of developing a micromechanistic framework for understanding fracture behavior of mineralized tissue and in predicting failure in vivo.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center