Send to

Choose Destination
J Steroid Biochem Mol Biol. 2004 Mar;88(3):265-75.

Concentration-dependent mitogenic and antiproliferative actions of 2-methoxyestradiol in estrogen receptor-positive human breast cancer cells.

Author information

Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.


We compared in this study the effects of 2-methoxyestradiol (2-MeO-E(2)) on the growth of two estrogen receptor (ER)-negative human breast cancer cell lines (MDA-MB-231 and MDA-MB-435s) and two ER-positive human breast cancer cell lines (MCF-7 and T-47D). 2-MeO-E(2) exerted a concentration-dependent antiproliferative action in the ER-negative MDA-MB-231 and MDA-MB-435s cells. The presence or absence of exogenous 17beta-estradiol (E(2)) in the culture medium did not affect the potency and efficacy of 2-MeO-E(2)'s antiproliferative action in these ER-negative cells. When the ER-positive MCF-7 and T-47D cells were cultured in a medium supplemented with 10nM of exogenous E(2), 2-MeO-E(2) at 750 nM to 2 microM concentrations exerted a similar antiproliferative effect. However, when the ER-positive cell lines were cultured in the absence of exogenous E(2), 2-MeO-E(2) at relatively low concentrations (10-750 nM) had a moderate mitogenic effect, with its apparent efficacy 75-80% of that of E(2). This mitogenic effect of 2-MeO-E(2) was ER-mediated and largely attributable to 2-MeO-E(2)'s residual estrogenic activity on the basis of our following findings: (i) its effect was only manifested in the ER-positive cells but not in the ER-negative cells; (ii) its effect in the ER-positive cells was partially or fully abolished when exogenous E(2) was concomitantly present in the culture medium; (iii) 2-MeO-E(2) retained 1-2% of E(2)'s binding affinity for the human ERalpha and ERbeta, and its mitogenic effect was inhibited in a concentration-dependent manner by ICI-182,780, a pure ER antagonist; and (iv) its effect was not due to its metabolic conversion to 2-hydroxyestradiol. Our timely findings are of importance to the on-going clinical trials designed to evaluate 2-MeO-E(2)'s effectiveness for the treatment of different types (ER-positive or ER-negative) of human breast cancer. This knowledge will improve the design of clinical trials as well as the interpretation of clinical outcomes when 2-MeO-E(2) is used as a single agent therapy or as part of a combination therapy for human breast cancer.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center