Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 May 4;101(18):7123-8. Epub 2004 Apr 26.

Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats.

Author information

Department of Neurology, Johns Hopkins University School of Medicine, Pathology 627C, 600 North Wolfe Street, Baltimore, MD 21287, USA.


We generated spinal motoneurons from embryonic stem (ES) cells to determine the developmental potential of these cells in vitro and their capacity to replace motoneurons in the adult mammalian spinal cord. ES cell-derived motoneurons extended long axons, formed neuromuscular junctions, and induced muscle contraction when cocultured with myoblasts. We transplanted motoneuron-committed ES cells into the spinal cords of adult rats with motoneuron injury and found that approximately 3,000 ES cell-derived motoneurons (25% of input) survived for >1 month in the spinal cord of each animal. ES cell-derived axonal growth was inhibited by myelin, and this inhibition was overcome by administration of dibutyryl cAMP (dbcAMP) or a Rho kinase inhibitor in vitro and in vivo. In transplanted rats infused with dbcAMP, approximately 80 ES cell-derived motor axons were observed within the ventral roots of each animal, whereas none were observed in transplanted rats not treated with dbcAMP. Because these cells replicate many of the developmental and mature features of true motoneurons, they are an important biological tool to understand formation of motor units in vitro and a potential therapeutic tool to reconstitute neural circuits in vivo.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center