Format

Send to

Choose Destination
Environ Sci Technol. 2004 Apr 15;38(8):2406-12.

Bioaccumulation potential of persistent organic chemicals in humans.

Author information

1
Baltic Sea Research Institute, P.O. Box 30 11 61, D-18112 Rostock, Germany.

Abstract

A model was used to explore the influence of physicalchemical properties on the potential of organic chemicals to bioaccumulate in humans. ACC-HUMAN, a model of organic chemical bioaccumulation through the agricultural and aquatic food chains to humans, was linked to a level I unit world model of chemical fate in the physical environment and parametrized for conditions in southern Sweden. Hypothetical, fully persistent chemicals with varying physical-chemical properties were distributed in the environment, and their bioaccumulation to humans was calculated. The results were evaluated using the environmental bioaccumulation potential (EBAP), defined as the quotient of the chemical quantity in a human divided by the quantity of chemical in the whole environment. Since the latter is closely related to emissions, EBAP is potentially a more useful tool for comparative risk assessment of chemicals than currently used medium-specific measures such as the fish-water bioaccumulation factor. A high environmental bioaccumulation potential, defined as > 10% of the maximum EBAP, was found for chemicals with 2 < log KOW < 11 and 6 < log KOA < 12. While these chemical partitioning properties clearly influenced bioaccumulation at each trophic level, these effects tended to equalize over the food web. The fact that the transfer from the environment as a whole to humans was quite uniform over a large chemical partitioning space suggests that these partitioning properties are relatively unimportant determinants of human exposure compared to other factors such as the substance's persistence in the environment and in the food web.

PMID:
15116847
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center