Format

Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 2004 Jun 2;23(11):2226-34. Epub 2004 Apr 29.

The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response.

Author information

1
Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Nagoya, Japan.

Abstract

Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and to a wide variety of environmental stresses. MAPK cascades can be inactivated at the MAPK activation step by members of the MAPK phosphatase (MKP) family. However, the components that act in MKP-regulated pathways have not been well characterized in the context of whole organisms. Here we characterize the Caenorhabditis elegans vhp-1 gene, encoding an MKP that acts preferentially on the c-Jun N-terminal kinase (JNK) and p38 MAPKs. We found that animals defective in vhp-1 are arrested during larval development. This vhp-1 defect is suppressed by loss-of-function mutations in the kgb-1, mek-1, and mlk-1 genes encoding a JNK-like MAPK, an MKK7-type MAPKK, and an MLK-type MAPKKK, respectively. The genetic and biochemical data presented here demonstrate a critical role for VHP-1 in the KGB-1 pathway. Loss-of-function mutations in each component in the KGB-1 pathway result in hypersensitivity to heavy metals. These results suggest that VHP-1 plays a pivotal role in the integration and fine-tuning of the stress response regulated by the KGB-1 MAPK pathway.

PMID:
15116070
PMCID:
PMC419906
DOI:
10.1038/sj.emboj.7600226
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center