Send to

Choose Destination
J Med Chem. 2004 May 6;47(10):2475-85.

Synthesis of 2,4-diamino-6-[2'-O-(omega-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpteridines as potent and selective inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase.

Author information

Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.


Six previously undescribed N-(2,4-diaminopteridin-6-yl)methyldibenz[b,f]azepines with water-solubilizing O-carboxyalkyloxy or O-carboxybenzyloxy side chains at the 2'-position were synthesized and compared with trimethoprim (TMP) and piritrexim (PTX) as inhibitors of dihydrofolate reductase (DHFR) from Pneumocystis carinii (Pc), Toxoplasma gondii (Tg), and Mycobacterium avium (Ma), three of the opportunistic organisms known to cause significant morbidity and mortality in patients with AIDS and other disorders of the immune system. The ability of the new analogues to inhibit reduction of dihydrofolate to tetrahydrofolate by Pc, Tg, Ma, and rat DHFR was determined, and the selectivity index (SI) was calculated from the ratio IC(50)(rat DHFR)/IC(50)(Pc, Tg, or Ma DHFR). The IC(50) values of the 2'-O-carboxypropyl analogue (10), with SI values in parentheses, were 1.1 nM (1300) against Pc DHFR, 9.9 nM (120) against Tg DHFR, and 2.0 nM (600) against Ma DHFR. The corresponding values for the 2'-O-(4-carboxybenzyloxy) analogue (12) were 1.0 nM (560), 22 nM (21), and 0.75 nM (630). By comparison, the IC(50) and SI values for TMP were Pc, 13 000 nM (14); Tg, 2800 nM (65); and Ma, 300 nM (610). For the prototypical potent but nonselective inhibitors PTX and TMX, respectively, these values were Pc, 13 nM (0.26) and 47 nM (0.17); Tg, 4.3 nM (0.76) and 16 nM (0.50); Ma, 0.61 nM (5.4) and 1.5 nM (5.3). Thus 10 and 12 met the criterion for DHFR inhibitors that combine the high selectivity of TMP with the high potency of PTX and TMX.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center