Format

Send to

Choose Destination
Phytochemistry. 2004 Apr;65(8):1039-46.

1,2-Dehydroreticuline synthase, the branch point enzyme opening the morphinan biosynthetic pathway.

Author information

1
Biozentrum Universit├Ąt Halle, Weinbergweg 22, D-06120 Halle/S., Germany.

Abstract

A synthase which oxidizes (S)-reticuline to 1,2-dehydroreticuline has been found to occur in seedlings of opium poppy (Papaver somniferum L.). Due to its instability, this enzyme could only be partly purified (ca. 5-fold enrichment). Partial characterization at this stage of purification showed that it does not need a redox cofactor and accepts both (S)-reticuline and (S)-norreticuline as substrates. [1-(2)H, (13)C]-(R,S)-reticuline was enzymatically converted into [1-(13)C]-dehydroreticuline, which has been identified by mass spectrometry. Release of the hydrogen atom in position C-1 of the isoquinoline alkaloid during the oxidative conversion, was exploited as a sensitive assay system for this enzyme. The enzyme has a pH optimum of 8.75, a temperature optimum of 37 degrees C and the apparent K(M) value for the substrate reticuline was shown to be 117 microM. Moreover it could be demonstrated by sucrose density gradient centrifugation that the enzyme is located in vesicles of varying size. In combination with the previously discovered strictly stereoselective and NADPH dependent 1,2-dehydroreticuline reductase the detection of this enzyme, the 1,2-dehydroreticuline synthase, provides the necessary inversion of configuration and completes the pathway from two molecules of L-tyrosine via (S)-norcoclaurine to (R)-reticuline in opium poppy involving a total number of 11 enzymes.

PMID:
15110683
DOI:
10.1016/j.phytochem.2004.02.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center