Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):263-73.

Time-resolved optical absorption studies of cytochrome oxidase dynamics.

Author information

  • 1Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.


Time-resolved spectroscopic studies in our laboratory of bovine heart cytochrome c oxidase dynamics are summarized. Intramolecular electron transfer was investigated upon photolysis of CO from the mixed-valence enzyme, by pulse radiolysis, and upon light-induced electron injection into the cytochrome c/cytochrome oxidase complex from a novel photoactivatable dye. The reduction of dioxygen to water was monitored by a gated multichannel analyzer using the CO flow-flash method or a synthetic caged dioxygen carrier. The pH dependence of the intermediate spectra suggests a mechanism of dioxygen reduction more complex than the conventional unidirectional sequential scheme. A branched model is proposed, in which one branch produces the P form and the other branch the F form. The rate of exchange between the two branches is pH-dependent. A cross-linked histidine-phenol was synthesized and characterized to explore the role of the cross-linked His-Tyr cofactor in the function of the enzyme. Time-resolved optical absorption spectra, EPR and FTIR spectra of the compound generated after UV photolysis indicated the presence of a radical residing primarily on the phenoxyl ring. The relevance of these results to cytochrome oxidase function is discussed.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center