Soybean root distribution, top growth and yield responses to ambient ozone and soil moisture stress when grown in soil columns in greenhouses

Environ Pollut. 1990;65(3):195-207. doi: 10.1016/0269-7491(90)90083-o.

Abstract

Soybeans (Glycine max. cv. Williams) were grown to maturity in soil columns within polyvinyl pipe and placed in greenhouses with charcoal filtered (CF) and nonfiltered (NF) air. In each greenhouse plants were grown with and without soil moisture stress (SMS). Targeted soil water potentials at 0.25 m for no SMS and between 0.45 and 0.60 m for the SMS regime were -0.05 and -0.45 M Pa, respectively. The 7 h (1000-1700 h EDT) mean O(3) concentrations (June-October) were 0.039 and 0.009 ppm in NF and CF air, respectively. Ozone and SMS in combination were less than additive in their effects on growth of the plant top and bean yields. Plants in CF air had 70% greater top weight, 58% more bean yield and 43% more root dry weight than in NF air. Both the plant and the seed weight from plants without SMS weighed 35% more than with SMS. Total root length in CF air for plants with and without SMS averaged 1.84 and 1.98 km, respectively, as compared to 1.59 and 1.66 km for plants with and without SMS in NF air. The resultsare different, so far as the combined effects of O(3) and SMS on yield and root growth are concerned, than in a similar field study by Heggestad and co-workers primarily because of the presence of a water table in the field but absence of it in the columns, as planned, in this experiment. It is unique to use large soil columns to study root distribution and length as related to the effects of ambient O(3) alone, and its combination with SMS.