Send to

Choose Destination
See comment in PubMed Commons below
Environ Pollut. 1990;67(4):361-74.

Effect of lead, mercury and cadmium on a sulphate-reducing bacterium.

Author information

  • 1National Institute of Oceanography, Dona Paula, Goa-403004, India.


A sulphate-reducing bacterial strain isolated from the south-west coast of India resembling Desulfosarcina in its physiology was tested for its behaviour towards HgCl(2), CdSO(4) and Pb(NO(3))(2). The order of toxicity to growth of these metal salts in a lactate-based medium at 50 microg ml(-1) concentrations was Cd>Pb>Hg and to respiration Pb>Cd>Hg. Inhibitory concentrations (viz. 100 microg ml(-1) of HgCl(2) and 200 microg ml(-1) of Pb(NO(3)(2)) had a stimulatory effect when the substrate was changed to acetate. With sodium acetate at 0.1% concentration, Hg and Pb had maximum stimulatory effect for growth and sulphide production. Experiments conducted directly with sediment slurries amended with lactate showed that all three metals (at levels below their inhibitory concentrations, i.e. 50 microg ml(-1) of metal salt for Cd and Hg and 100 microg ml(-1) for Pb) inhibited sulphate-reducing activity (SRA) with Pb decreasing the peak production by 68%. The order of toxicity in both lactate and acetate-amended slurry was Pb>Cd>Hg and Pb>Hg>Cd, respectively. With acetate, SRA in the presence of Cd and Hg was stimulated 110% and 27%, respectively. Pb inhibited SRA by 11%. There is a general reduction in the inhibition of sulphide production in slurries as compared with pure culture of the isolate.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center