Format

Send to

Choose Destination
Free Radic Biol Med. 2004 May 1;36(9):1112-25.

Reactive oxygen species induce different cell death mechanisms in cultured neurons.

Author information

1
Department of Neuroscience, Institute of Cell Physiology, National University of Mexico, Mexico City, Mexico.

Abstract

Apoptosis is characterized by chromatin condensation, phosphatidylserine translocation, and caspase activation. Neuronal apoptotic death involves the participation of reactive oxygen species (ROS), which have also been implicated in necrotic cell death. In this study we evaluated the role of different ROS in neuronal death. Superoxide anion was produced by incubating cells with xanthine and xanthine oxidase plus catalase, singlet oxygen was generated with rose Bengal and luminic stimuli, and hydrogen peroxide was induced with the glucose and glucose oxidase. Cultured cerebellar granule neurons died with the characteristics of apoptotic death in the presence of superoxide anion or singlet oxygen. These two conditions induced caspase activation, nuclear condensation, phosphatidylserine translocation, and a decrease in intracellular calcium levels. On the other hand, hydrogen peroxide led to a necrosis-like cell death that did not induce caspase activation, phosphatidylserine translocation, or changes in calcium levels. Cell death produced by both singlet oxygen and superoxide anion, but not hydrogen peroxide, was partially reduced by an increase in intracellular calcium levels. These results suggest that formation of specific ROS can lead to different molecular cell death mechanisms (necrosis and apoptosis) and that ROS formed under different conditions could act as initiators or executioners on neuronal death.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center