Format

Send to

Choose Destination
J Am Chem Soc. 2004 Apr 21;126(15):4812-9.

Carbohydrate chips for studying high-throughput carbohydrate-protein interactions.

Author information

1
Department of Chemistry, Yonsei University, Seoul 120-749, Korea.

Erratum in

  • J Am Chem Soc. 2004 Sep 1;126(34):10794.

Abstract

Carbohydrate-protein interactions play important biological roles in living organisms. For the most part, biophysical and biochemical methods have been used for studying these biomolecular interactions. Less attention has been given to the development of high-throughput methods to elucidate recognition events between carbohydrates and proteins. In the current effort to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate microarrays by immobilizing maleimide-linked carbohydrates on thiol-derivatized glass slides and carried out lectin binding experiments by using these microarrays. The results showed that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. In addition, binding affinities of lectins to carbohydrates were also quantitatively analyzed by determining IC(50) values of soluble carbohydrates with the carbohydrate microarrays. To fabricate carbohydrate chips that contained more diverse carbohydrate probes, solution-phase parallel and enzymatic glycosylations were performed. Three model disaccharides were in parallel synthesized in solution-phase and used as carbohydrate probes for the fabrication of carbohydrate chips. Three enzymatic glycosylations on glass slides were consecutively performed to generate carbohydrate microarrays that contained the complex oligosaccharide, sialyl Le(x). Overall, these works demonstrated that carbohydrate chips could be efficiently prepared by covalent immobilization of maleimide-linked carbohydrates on the thiol-coated glass slides and applied for the high-throughput analyses of carbohydrate-protein interactions.

PMID:
15080685
DOI:
10.1021/ja0391661
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center