Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jun 4;279(23):23900-7. Epub 2004 Apr 6.

Functional polymorphism in the carboxyl terminus of the alpha-subunit of the human epithelial sodium channel.

Author information

1
Department of Medicine, University of Pennsylvania, Philadelphia 19104, USA.

Abstract

A common human epithelial sodium channel (ENaC) polymorphism, alphaT663A, is present in the cytoplasmic C terminus of the alpha-subunit, although it is unclear whether this polymorphism segregates with blood pressure. We examined whether this polymorphism was associated with differences in functional Na(+) channel expression. Whole cell amiloride-sensitive currents in Xenopus oocytes expressing wild type channels (alphaT663betagamma) were significantly approximately 1.3-2.0-fold higher than currents measured in oocytes expressing channels with an Ala, Gly or Leu, or Lys at position alpha663. In contrast, differences in functional human ENaC expression were not observed with oocytes expressing channels having Thr (wild type), Ser, or Asp at this position. The surface expression of channels, measured using an epitope-tagged beta-subunit, was significantly reduced in oocytes expressing alphaT663Abetagamma when compared with oocytes expressing alphaT663betagamma. The corresponding polymorphism was generated in the mouse alpha-subunit (malphaA692T) and was not associated with differences in functional alphabetagamma-mouse ENaC expression. The polymorphism is present in a region that is not well conserved between human and mouse. We generated a mouse/human chimera by replacement of the distal C terminus of the mouse alpha-subunit with the distal C terminus of the human alpha-subunit. Co-expression of this m(1-678)/h(650-669)T663A chimera with mouse betagamma led to a significant reduction in whole cell Na(+) currents and surface expression when compared with m(1-678)/h(650-669)T663-mbetagamma. Our results suggest that halphaT663A is a functional polymorphism that affects human ENaC surface expression.

PMID:
15069064
DOI:
10.1074/jbc.M401941200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center