Send to

Choose Destination
Mol Microbiol. 2004 Apr;52(2):313-27.

Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity.

Author information

Wellcome Trust Laboratories for Molecular Parasitology, Centre for Molecular Microbiology and Infection, Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.


Sphingolipids are structural components of the eukaryotic plasma membrane that are involved, together with cholesterol, in the formation of lipid microdomains (rafts). Additionally, sphingolipid metabolites have been shown to modulate a wide variety of cellular events, including differentiation and apoptosis. To investigate the role of de novo sphingolipid biosynthesis in Leishmania, we have focused on serine palmitoyltransferase (SPT), which catalyses the first, rate-limiting step in the synthetic pathway. Genetic ablation of one SPT subunit, LmLCB2, yields viable null parasites that can no longer synthesize ceramide and sphingolipids de novo. Unexpectedly, LmLCB2 expression (and sphingolipid biosynthesis) is stage regulated in Leishmania, being undetectable in intramacrophage parasites. As expected from this observation, the LmLCB2 null mutants maintain infectivity in vivo. However, they are compromised in their ability to form infective extracellular parasites, correlating with a defect in association of the virulence factor, leishmanolysin or GP63, with lipid rafts during exocytosis and an observed relocalization of a second virulence factor, lipophosphogycan, during differentiation. Thus, de novo sphingolipid biosynthesis is critical for membrane trafficking events in extracellular Leishmania but has at best a minor role in intracellular pathogenesis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center