Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2004 Apr 13;43(14):4227-39.

Differences in biochemical properties and in biological function between human SP-A1 and SP-A2 variants, and the impact of ozone-induced oxidation.

Author information

1
Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.

Abstract

The human surfactant protein A (SP-A) locus consists of two functional genes, SP-A1 and SP-A2, with several alleles characterized for each gene. Functional variations between SP-A1 and SP-A2 variants either before or after ozone exposure have been observed. To understand the basis of these differences, we studied SP-A1 and SP-A2 variants by comparing coding sequences, oligomerization patterns under various conditions, composition of oligomers with regard to amino terminal sequence isoforms, biological activity (regulation of phosphatidylcholine (PC) secretion by alveolar type II cells), and the impact of ozone-induced oxidation. We found that (i) the SP-A1 (6A(4)) allele is the most divergent from all SP-A2 alleles, particularly from the SP-A2 (1A(1)). (ii) Differences exist in oligomerization among SP-A1, SP-A2, and coexpressed SP-A1/SP-A2, with higher order multimers (i.e., consisting of more subunits) observed for SP-A1 than for SP-A2 variants. Differences among SP-A1 or SP-A2 gene products are minimal. (iii) Amino acid variants in the amino terminal sequences are observed after signal peptide removal, including variants with an extra cysteine. (iv) Oxidation is observed after ozone exposure, involving several SP-A residues that include cysteine, methionine, and tryptophan. (v) The SP-A2 variant (1A(0)) and the coexpressed protein 1A(0)/6A(2) inhibit ATP-stimulated PC secretion from alveolar type II cells to a greater extent than SP-A1 (6A(2)), a biologic activity that was susceptible to ozone treatment.

PMID:
15065867
DOI:
10.1021/bi036023i
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center