Format

Send to

Choose Destination
Biochem Biophys Res Commun. 2004 Apr 30;317(2):598-604.

Monocyte chemoattractant protein 1 expression is stimulated by growth hormone and interleukin-6 in 3T3-L1 adipocytes.

Author information

1
University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany.

Abstract

During the last 10 years, various adipocytokines have been described which influence insulin sensitivity profoundly and might, therefore, potentially link obesity and insulin resistance. Recently, monocyte chemoattractant protein (MCP)-1 was characterized as a novel adipose-secreted factor upregulated in obesity and insulin resistance that impairs insulin signaling in fat cells in vitro and can be found in atherosclerotic lesions. To clarify expression and regulation of this adipocytokine, MCP-1 mRNA was measured by quantitative real-time reverse transcription-polymerase chain reaction during differentiation of 3T3-L1 adipocytes and after treatment with various hormones known to induce insulin resistance. Interestingly, MCP-1 synthesis was significantly downregulated between 43% and 68% during differentiation of 3T3-L1 preadipocytes. Furthermore, 10 ng/ml tumor necrosis factor alpha, 100 nM insulin, 500 ng/ml growth hormone (GH), and 30 ng/ml interleukin (IL)-6-induced MCP-1 mRNA by up to 124-, 23-, 8-, and 2.5-fold, respectively, in a time-dependent fashion with significant stimulation seen at concentrations as low as 0.5 ng/ml GH and 30 ng/ml IL-6. In contrast, the glucocorticoid dexamethasone potently downregulated MCP-1 with significant suppression detectable at concentrations as low as 3 nM and as early as 2h after effector addition. Studies using pharmacological inhibitors suggested that the positive effects of GH and IL-6 on MCP-1 synthesis are at least in part mediated by janus kinase 2 and p44/42 mitogen-activated protein kinase. Taken together, our results show a differential regulation of MCP-1 mRNA by insulin resistance-inducing hormones and support the view that this adipocytokine might be an interesting novel candidate linking insulin resistance, obesity, and atherosclerosis. This adipocytokine could thus be a potential pharmacological target for the treatment of impaired insulin sensitivity.

PMID:
15063799
DOI:
10.1016/j.bbrc.2004.03.090
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center