Format

Send to

Choose Destination
Neuroscience. 2004;125(2):427-39.

Inhibition of calpains, by treatment with leupeptin, improves motoneuron survival and muscle function in models of motoneuron degeneration.

Author information

1
The Graham Watts Laboratories, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.

Abstract

The effect of treatment with leupeptin, a calpain inhibitor, on motoneuron survival and muscle function was examined in in vitro and in vivo models of motoneuron degeneration. Exposure of primary rat motoneurons to alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) is an established in vitro model of excitotoxic motoneuron death. Here we show that leupeptin treatment improved motoneuron survival following exposure to AMPA (50 microM). Application of leupeptin (100 microM) to AMPA treated cultures rescued many motoneurons so that 74% (+/-3.4 S.E.M., n=5) survived compared with only 49% (+/-2.4 S.E.M., n=5) in untreated cultures. The effect of treatment with leupeptin on motoneuron survival and muscle function was also examined in vivo. In 3 day-old rats, the sciatic nerve was crushed and at the time of injury, a silicon implant containing leupeptin was inserted onto the lumbar spinal cord. The effect on long-term motoneuron survival and muscle function was assessed 12 weeks after injury. The results showed that there was long-term improvement in motoneuron survival in the leupeptin treated group. Thus, in untreated animals 12 weeks after nerve crush only 30% (+/-2.8. S.E.M., n=3) of sciatic motoneurons survived compared with 43% (+/-1.5 S.E.M., n=3) in the leupeptin-treated group. This improvement in motoneuron survival was reflected in a significant improvement in muscle function in the leupeptin-treated group. For example in the soleus muscle of treated rats 20.8 (+/-1.40 S.E.M., n=5) motor units survived compared with only 14.6 (+/-1.21 S.E.M., n=5) in untreated animals. Thus, treatment with leupeptin, a calpain inhibitor, rescues motoneurons from cell death and improves muscle function following nerve injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center