Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Res. 2004 Jan;38(1):97-103.

Evaluation of antioxidant effect of different extracts of Myrtus communis L.

Author information

  • 1Department of Pharmaceutical Science, University of Florence, Via G. Capponi 9, Florence 50121, Italy.


Oxidative stress is involved in the pathogenesis of numerous diseases. Nevertheless, no optimal natural antioxidant has been found for therapeutics, therefore polyphenol antioxidants have been looked for in myrtle leaves, a plant that in folk medicine has been used as anti-inflammatory drug. Antioxidant-rich fractions were prepared from myrtle (Myrtus communis L.) leaves liquid-liquid extraction (LLE) with different solvents. All myrtle extracts were very rich in polyphenols. In particular, hydroalcoholic extracts contain galloyl-glucosides, ellagitannins, galloyl-quinic acids and flavonol glycosides; ethylacetate extract and aqueous residues after LLE are enriched in flavonol glycosides and hydrolysable tannins (galloyl-glucosides, ellagitannins, galloyl-quinic acids), respectively. Qualitative and quantitative analysis for the single unidentified compound was also performed. Human LDL exposed to copper ions was used to evaluate the antioxidant activity of the myrtle extracts. Addition of these extracts did not affect the basal oxidation of LDL but dose-dependently decreased the oxidation induced by copper ions. Moreover, the myrtle extracts reduce the formation of conjugated dienes. The antioxidant effect of three myrtle extracts decreased in the following order: hydroalcoholic extracts, ethylacetate and aqueous residues after LLE. The extracts had the following IC50: 0.36, 2.27 and 2.88 microM, when the sum of total phenolic compounds was considered after the correction of molecular weight based on pure compounds. Statistical analysis showed a significant difference among hydroalcoholic extracts vs. the ethylacetate and aqueous residues after LLE. These results suggest that the myrtle extracts have a potent antioxidant activity mainly due to the presence of galloyl derivatives.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk