Send to

Choose Destination
Leuk Lymphoma. 2004 Jan;45(1):1-10.

Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia.

Author information

Cancer Genetics Research Group, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand.


RUNX1 (AML1, CBFA2) is mutated in affected members of families with autosomal dominant thrombocytopenia and platelet dense granule storage pool deficiency. Many of those affected, usually by point mutations in one allele, are predisposed to the development of acute myeloid leukemia (AML) in adult life. The RUNX1 protein complexes with core binding factor beta (CBFB) to form a heterodimeric core binding transcription factor (CBF) that regulates many genes important in hematopoiesis. RUNX1 was first identified as the gene on chromosome 21 that is rearranged by the translocation t(8;21)(q22;q22.12) recurrently found in the leukemic cells of patients with AML. In addition to the t(8;21), RUNX1 is rearranged with one of several partner genes on other chromosomes by somatically acquired translocations associated with hematological malignancies. Point mutations of RUNX1 are also found in sporadic leukemias to reinforce the important position of this gene on the multi-step path to leukemia. In animal models, at least one functional copy of RUNX1 is required to effect definitive embryonic hematopoiesis. Cells expressing dominant-negative mutants of RUNX1 are readily immortalized and transformed, and those RUNX1 mutants which retain CBFB binding ability may possess dominant-negative function. However, in some families there is transmitted one mutated allele of RUNX1 with no dominant-negative function, demonstrating that simple haploinsufficiency of RUNX1 predisposes to AML and also causes a generalized hematopoietic stem cell disorder most recognizable as thrombocytopenia.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center