Format

Send to

Choose Destination
See comment in PubMed Commons below
Mamm Genome. 2004 Feb;15(2):100-13.

A large-sample QTL study in mice: II. Body composition.

Author information

1
Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583-0908, USA.

Abstract

Using lines of mice having undergone long-term selection for high and low growth, a large-sample (n = approximately 1,000 F2) experiment was conducted to gain further understanding of the genetic architecture of complex polygenic traits. Composite interval mapping on data from male F2 mice (n = 552) detected 50 QTL on 15 chromosomes impacting weights of various organ and adipose subcomponents of growth, including heart, liver, kidney, spleen, testis, and subcutaneous and epididymal fat depots. Nearly all aggregate growth QTL could be interpreted in terms of the organ and fat subcomponents measured. More than 25% of QTL detected map to MMU2, accentuating the relevance of this chromosome to growth and fatness in the context of this cross. Regions of MMU7, 15, and 17 also emerged as important obesity "hot-spots." Average degrees of directional dominance are close to additivity, matching expectations for body composition traits. A strong QTL congruency is evident among heart, liver, kidney, and spleen weights. Liver and testis are organs whose genetic architectures are, respectively, most and least aligned with that for aggregate body weight. In this study, growth and body weight are interpreted in terms of organ subcomponents underlying the macro aggregate traits, and anchored on the corresponding genomic locations.

PMID:
15058381
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center