Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jun 4;279(23):24452-9. Epub 2004 Mar 31.

Annular oligomeric amyloid intermediates observed by in situ atomic force microscopy.

Author information

Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA.


Amyloidoses and related protein deposition diseases involve the transformation of normally soluble proteins into insoluble deposits, usually fibrillar in nature. Although it was originally assumed that the fibrils were the toxic species, this assumption has recently been called into question. Accumulating evidence in several systems suggests that oligomeric intermediates on the aggregation pathway may be toxic. In the present study we used in situ atomic force microscopy to monitor aggregation in aqueous solution in real time. The sample used was an amyloidogenic immunoglobulin light chain, involved in AL or light chain amyloidosis. The nature of the observed oligomeric intermediates was dependent on the conditions of incubation, especially pH and ionic strength. Several different aggregation intermediates with a variety of morphologies, including annular or torus-shaped species, were observed. The data indicate that protein aggregation can be very complex, involving a variety of different oligomeric intermediates whose population will be determined by the kinetic and thermodynamic competition between them.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center