Format

Send to

Choose Destination
J Thorac Cardiovasc Surg. 2004 Apr;127(4):1078-86.

Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer.

Author information

1
Department of Surgery, University of Virginia School of Medicine, Charlottesville, 22908, USA.

Abstract

OBJECTIVE:

Inhibitors of histone deacetylases are potent inducers of cell-cycle arrest and apoptosis in certain malignancies. We have previously demonstrated that chemotherapy activates the antiapoptotic transcription factor nuclear factor kappa B in non-small cell lung cancer and fails to induce significant levels of apoptosis. We hypothesize that nuclear factor kappa B inhibition with the proteasome inhibitor bortezomib (formerly known as PS-341) will sensitize non-small cell lung cancer cells to histone deacetylase inhibitor-mediated apoptosis.

METHODS:

Tumorigenic non-small cell lung cancer cells (A549, H358, and H460) were treated with bortezomib, followed by the histone deactylase inhibitor sodium butyrate. After treatment, nuclear factor kappa B transcriptional activity was measured by using a luciferase reporter assay and transcription of the nuclear factor kappa B-dependent gene IL8. Apoptosis was determined on the basis of caspase-3 activation and DNA fragmentation. Western blot analyses for the cell-cycle regulatory proteins p21 and p53 were performed, and cell-cycle alterations were determined by means of FACS analysis. Experiments were performed in triplicate, and statistical significance was determined by using unpaired t tests.

RESULTS:

Butyrate increased nuclear factor kappa B transcriptional activity 4-fold relative to that seen in control cells (P =.05) in all non-small cell lung cancer cell lines. Treatment with bortezomib reduced butyrate-induced activation of nuclear factor kappa B to baseline levels. The proteins p21 and p53 were stabilized after treatment with bortezomib, correlating with a G(2)/M cell-cycle arrest. Treatment with butyrate alone resulted in minimal apoptosis, but combined histone deacetylase and proteasome inhibition increased apoptosis 3- to 4-fold (P =.02).

CONCLUSIONS:

Combined molecular targeting of histone deacteylases and proteasomes synergistically induced apoptosis in non-small cell lung cancer. Pharmacologic nuclear factor kappa B suppression through proteasome inhibition, followed by treatment with histone deacetylase inhibitors, might represent a novel treatment strategy for patients with non-small cell lung cancer.

PMID:
15052205
DOI:
10.1016/s0022-5223(03)01321-7
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center