Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Aspects Med. 2004 Feb-Apr;25(1-2):125-39.

Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease.

Author information

1
Laboratory of Oxygen Metabolism and School of Pharmacy and Biochemistry, University Hospital, University of Buenos Aires, Buenos Aires, Argentina.

Abstract

Mitochondria are the specialized organelles for energy metabolism but also participate in the production of O(2) active species, cell cycle regulation, apoptosis and thermogenesis. Classically, regulation of mitochondrial energy functions was based on the ADP/ATP ratio, which dynamically stimulates the transition between resting and maximal O(2) uptake. However, in the last years, NO was identified as a physiologic regulator of electron transfer and ATP synthesis by inhibiting cytochrome oxidase. Additionally, NO stimulates the mitochondrial production of O(2) active species, primarily O(2)(-) and H(2)O(2), and, depending on NO matrix concentration, of ONOO(-), which is responsible for the nitrosylation and nitration of mitochondrial components. By this means, alteration in mitochondrial complexes restricts energy output, further increases O(2) active species and changes cell signaling for proliferation and apoptosis through redox effects on specific pathways. These mechanisms are prototypically operating in prevalent generalized diseases like sepsis with multiorgan failure or limited neurodegenerative disorders like Parkinson's disease. Complex I appears to be highly susceptible to ONOO(-) effects and nitration, which defines an acquired group of mitochondrial disorders, in addition to the genetically induced syndromes. Increase of mitochondrial NO may follow over-expression of nNOS, induction and translocation of iNOS, and activation and/or increased content of the newly described mtNOS. Likewise, mtNOS is important in the modulation of O(2) uptake and cell signaling, and in mitochondrial pathology, including the effects of aging, dystrophin deficiency, hypoxia, inflammation and cancer.

PMID:
15051322
DOI:
10.1016/j.mam.2004.02.014
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center