Send to

Choose Destination
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5069-74. Epub 2004 Mar 26.

Gene discovery in genetically labeled single dopaminergic neurons of the retina.

Author information

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.


In the retina, dopamine plays a central role in neural adaptation to light. Progress in the study of dopaminergic amacrine (DA) cells has been limited because they are very few (450 in each mouse retina, 0.005% of retinal neurons). Here, we applied transgenic technology, single-cell global mRNA amplification, and cDNA microarray screening to identify transcripts present in DA cells. To profile gene expression in single neurons, we developed a method (SMART7) that combines a PCR-based initial step (switching mechanism at the 5' end of the RNA transcript or SMART) with T7 RNA polymerase amplification. Single-cell targets were synthesized from genetically labeled DA cells to screen the RIKEN 19k mouse cDNA microarrays. Seven hundred ninety-five transcripts were identified in DA cells at a high level of confidence, and expression of the most interesting genes was confirmed by immunocytochemistry. Twenty-one previously undescribed proteins were found in DA cells, including a chloride channel, receptors and other membrane glycoproteins, kinases, transcription factors, and secreted neuroactive molecules. Thirty-eight percent of transcripts were ESTs or coding for hypothetical proteins, suggesting that a large portion of the DA cell proteome is still uncharacterized. Because cryptochrome-1 mRNA was found in DA cells, immunocytochemistry was extended to other components of the circadian clock machinery. This analysis showed that DA cells contain the most common clock-related proteins.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center