Format

Send to

Choose Destination
FEBS Lett. 2004 Mar 26;562(1-3):197-201.

Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage.

Author information

1
Department of Forest and Forest Products Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan.

Abstract

An investigation was performed to determine whether lignin dehydrogenative polymerization proceeds via radical mediation or direct oxidation by peroxidases. It was found that coniferyl alcohol radical transferred quickly to sinapyl alcohol. The transfer to syringaresinol was slower, however, the transfer to polymeric lignols occurred very slightly. This result suggests that the radical mediator theory does not sufficiently explain the mechanism for dehydrogenative polymerization of lignin. A cationic cell wall peroxidase (CWPO-C) from poplar (Populus alba L.) callus showed a strong substrate preference for sinapyl alcohol and the sinapyl alcohol dimer, syringaresinol. Moreover, CWPO-C was capable of oxidizing high-molecular-weight sinapyl alcohol polymers and ferrocytochrome c. Therefore, the CWPO-C characteristics are important to produce polymer lignin. The results suggest that CWPO-C may be a peroxidase isoenzyme responsible for the lignification of plant cell walls.

PMID:
15044025
DOI:
10.1016/S0014-5793(04)00224-8
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center