Format

Send to

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2004 Apr;32(4):447-54.

Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes.

Author information

1
Department of Pharmacy, University of Washington, Box 357630, Seattle, WA 98105, USA.

Abstract

Oxycodone undergoes N-demethylation to noroxycodone and O-demethylation to oxymorphone. The cytochrome P450 (P450) isoforms capable of mediating the oxidation of oxycodone to oxymorphone and noroxycodone were identified using a panel of recombinant human P450s. CYP3A4 and CYP3A5 displayed the highest activity for oxycodone N-demethylation; intrinsic clearance for CYP3A5 was slightly higher than that for CYP3A4. CYP2D6 had the highest activity for O-demethylation. Multienzyme, Michaelis-Menten kinetics were observed for both oxidative reactions in microsomes prepared from five human livers. Inhibition with ketoconazole showed that CYP3A is the high affinity enzyme for oxycodone N-demethylation; ketoconazole inhibited >90% of noroxycodone formation at low substrate concentrations. CYP3A-mediated noroxycodone formation exhibited a mean K(m) of 600 +/- 119 microM and a V(max) that ranged from 716 to 14523 pmol/mg/min. Contribution from the low affinity enzyme(s) did not exceed 8% of total intrinsic clearance for N-demethylation. Quinidine inhibition showed that CYP2D6 is the high affinity enzyme for O-demethylation with a mean K(m) of 130 +/- 33 microM and a V(max) that ranged from 89 to 356 pmol/mg/min. Activity of the low affinity enzyme(s) accounted for 10 to 26% of total intrinsic clearance for O-demethylation. On average, the total intrinsic clearance for noroxycodone formation was 8 times greater than that for oxymorphone formation across the five liver microsomal preparations (10.5 microl/min/mg versus 1.5 microl/min/mg). Experiments with human intestinal mucosal microsomes indicated lower N-demethylation activity (20-50%) compared with liver microsomes and negligible O-demethylation activity, which predict a minimal contribution of intestinal mucosa in the first-pass oxidative metabolism of oxycodone.

PMID:
15039299
DOI:
10.1124/dmd.32.4.447
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center