Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4776-80. Epub 2004 Mar 22.

Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation.

Author information

1
Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway NJ 08854, USA.

Abstract

By monitoring the end-to-end extension of a mechanically stretched, supercoiled, single DNA molecule, we have been able directly to observe the change in extension associated with unwinding of approximately one turn of promoter DNA by RNA polymerase (RNAP). By performing parallel experiments with negatively and positively supercoiled DNA, we have been able to deconvolute the change in extension caused by RNAP-dependent DNA unwinding (with approximately 1-bp resolution) and the change in extension caused by RNAP-dependent DNA compaction (with approximately 5-nm resolution). We have used this approach to quantify the extent of unwinding and compaction, the kinetics of unwinding and compaction, and effects of supercoiling, sequence, ppGpp, and nucleotides. We also have used this approach to detect promoter clearance and promoter recycling by successive RNAP molecules. We find that the rate of formation and the stability of the unwound complex depend profoundly on supercoiling and that supercoiling exerts its effects mechanically (through torque), and not structurally (through the number and position of supercoils). The approach should permit analysis of other nucleic-acid-processing factors that cause changes in DNA twist and/or DNA compaction.

PMID:
15037753
PMCID:
PMC387324
DOI:
10.1073/pnas.0307241101
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center