Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2004 Mar 5;336(5):989-96.

Salt-bridges can stabilize but do not accelerate the folding of the homodimeric coiled-coil peptide GCN4-p1.

Author information

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.


Double mutant cycle analysis was employed to ascertain the role of intra- and interchain salt-bridges in the folding and stability of the dimeric coiled-coil peptide, GCN4-p1, the 33-residue leucine zipper domain of the transcriptional activator GCN4. Equilibrium circular dichroism studies of the urea-induced unfolding reaction at neutral pH revealed that both types of ionic interactions, localized primarily in the N-terminal portion of the molecule, enhance the stability of the native coiled-coil. By contrast, comparable stopped-flow circular dichroism studies indicate that the salt-bridge interactions, with one possible exception, are not well formed in the transition state for folding. Although the E22Q/R25A double mutant failed to fold, fragmentation studies suggest that the E22/R25 intramolecular salt-bridge may play a critical role in stabilizing C-terminal nascent helices that drive the association reaction. The remaining salt-bridges appear to stabilize the parallel-stranded coiled-coil architecture of GCN4-p1 only after the peptide traverses the rate-limiting, dimeric transition state.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center