Format

Send to

Choose Destination
See comment in PubMed Commons below
Redox Rep. 2004;9(1):49-55.

Mobilization of intracellular calcium by peroxynitrite in arteriolar smooth muscle cells from rats.

Author information

1
Department of Pathophysiology, First Military Medical University, Guangzhou, People's Republic of China.

Abstract

The present study was designed to investigate the possible effects of peroxynitrite (ONOO(-)) on the intracellular calcium concentration ([Ca(2+)](i)) of mesenteric arteriolar smooth muscle cells (ASMCs), and to reveal the underlying mechanisms by using fluorescence imaging analysis. The results showed that ONOO(-) could exert a concentration- and time-dependent but also a dual effect on [Ca(2+)](i). Bolus administration with a low concentration of ONOO(-) (25 microM) decreased [Ca(2+)](i), whereas higher concentrations (50 or 100 microM) increased [Ca(2+)](i) persistently. Further experiments demonstrated that pretreatment of ASMCs with calcium-free medium completely abolished [Ca(2+)](i) increase by 100 microM ONOO(-). Additionally, nifedipine, an antagonist of selective L-type voltage-gated calcium channels (VGCCs), delayed the [Ca(2+)](i) response to ONOO(-), and ryanodine, an inhibitor of intracellular calcium release from the sarcoplasmic reticulum, effectively antagonized [Ca(2+)](i) increase during the late stage of ONOO(-) exposure. Furthermore, [Ca(2+)](i) alteration by ONOO(-) appeared to be intimately associated with the subsequent membrane potential changes. Although the mechanisms by which ONOO(-) alters [Ca(2+)](i) are complex, we conclude that a series of variables such as external calcium influx, activation of VGCCs, intracellular calcium release, and membrane potential changes are involved. The decrease of [Ca(2+)](i) in ASMCs by a low concentration of ONOO(-) may participate in the pathogenesis of low vasoreactivity in shock, and the increase of [Ca(2+)](i) by high concentrations of ONOO(-) may lead to calcium overload with cellular injury.

PMID:
15035827
DOI:
10.1179/135100004225003914
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center