Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2004 Apr 1;172(7):4195-203.

Glucose-regulated protein 94/glycoprotein 96 elicits bystander activation of CD4+ T cell Th1 cytokine production in vivo.

Author information

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.


Glucose-regulated protein 94 (GRP94/gp96), the endoplasmic reticulum heat shock protein 90 paralog, elicits both innate and adaptive immune responses. Regarding the former, GRP94/gp96 stimulates APC cytokine expression and dendritic cell maturation. The adaptive component of GRP94/gp96 function reflects a proposed peptide-binding activity and, consequently, a role for native GRP94/gp96-peptide complexes in cross-presentation. It is by this mechanism that tumor-derived GRP94/gp96 is thought to suppress tumor growth and metastasis. Recent data have demonstrated that GRP94/gp96-elicited innate immune responses can be sufficient to suppress tumor growth and metastasis. However, the immunological processes activated in response to tumor Ag-negative sources of GRP94/gp96 are currently unknown. We have examined the in vivo immunological response to nontumor sources of GRP94/gp96 and report that administration of syngeneic GRP94/gp96- or GRP94/gp96-N-terminal domain-secreting KBALB fibroblasts to BALB/c mice stimulates CD11b(+) and CD11c(+) APC function and promotes bystander activation of CD4(+) T cell Th1 cytokine production. Only modest activation of CD8(+) T cell or NK cell cytolytic function was observed. The GRP94/gp96-dependent induction of CD4(+) T cell cytokine production was markedly inhibited by carrageenan, indicating an essential role for APC in this response. These results identify the bystander activation of CD4(+) T lymphocytes as a previously unappreciated immunological consequence of GRP94/gp96 administration and demonstrate that GRP94/gp96-elicited alterations in the in vivo cytokine environment influence the development of CD4(+) T cell effector functions, independently of its proposed function as a peptide chaperone.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center