Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2004 Jan;166(1):171-86.

The sys-1 and sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of the Caenorhabditis elegans gonad.

Author information

  • 1Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.


To form the proximal-distal axis of the C. elegans gonad, two somatic gonadal precursor cells, Z1 and Z4, divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. Genes governing this process include the lin-17 frizzled receptor, wrm-1/beta-catenin, the pop-1/TCF transcription factor, lit-1/nemo-like kinase, and the sys-1 gene. Normally, all of these regulators promote the distal fate. Here we show that nuclear levels of a pop-1 GFP fusion protein are less abundant in the distal than in the proximal Z1/Z4 daughters. This POP-1 asymmetry is lost in mutants disrupting Wnt/MAPK regulation, but retained in sys-1 mutants. We find that sys-1 is haplo-insufficient for gonadogenesis defects and that sys-1 and pop-1 mutants display a strong genetic interaction in double heterozygotes. Therefore, sys-1 is a dose-sensitive locus and may function together with pop-1 to control Z1/Z4 asymmetry. To identify other regulatory genes in this process, we screened for mutants resembling sys-1. Four such genes were identified (gon-14, -15, -16, and sys-3) and shown to interact genetically with sys-1. However, only sys-3 promotes the distal fate at the expense of the proximal fate. We suggest that sys-3 is a new key gene in this pathway and that gon-14, gon-15, and gon-16 may cooperate with POP-1 and SYS-1 at multiple stages of gonad development.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk