Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2004 Jun 15;380(Pt 3):723-33.

Interaction(s) of rotavirus non-structural protein 4 (NSP4) C-terminal peptides with model membranes.

Author information

1
Department of Pharmacology and Physiology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.

Abstract

Rotavirus is the major cause of dehydrating gastroenteritis in children and young animals. NSP4 (non-structural protein 4), a rotaviral non-structural glycoprotein and a peptide NSP4(114-135) (DKLTTREIEQVELLKRIYDKLT), corresponding to NSP4 amino acids 114-135, induce diarrhoeal disease in a neonatal mouse model and interact with model membranes that mimic caveolae. Correlation of the mechanisms of diarrhoea induction and membrane interactions by NSP4 protein and peptide remain unclear. Several additional NSP4 peptides were synthesized and their interactions with membranes studied by (i) CD, (ii) a filtration-binding assay and (iii) a fluorescent molecule leakage assay. Model membranes that varied in lipid compositions and radius of curvature were utilized to determine the compositional and structural requirements for optimal interaction with the peptides of NSP4. Similar to the intact protein and NSP4(114-135), peptides overlapping residues 114-135 had significantly higher affinities to membranes rich in negatively charged lipids, rich in cholesterol and with a high radius of curvature. In the leakage assay, small and large unilamellar vesicles loaded with the fluorophore/quencher pair 8-aminonaphthalene-1,3,6-trisulphonic acid disodium salt/p -xylene-bis-pyridinium bromide were incubated with the NSP4 peptides and monitored for membrane disruption by lipid reorganization or by pore formation. At a peptide concentration of 15 microM, none of the NSP4 peptides caused leakage. These results confirm that NSP4 interacts with caveolae-like membranes and the alpha-helical region of NSP4(114-135) comprises a membrane interaction domain that does not induce membrane disruption at physiological concentrations.

PMID:
15012630
PMCID:
PMC1224213
DOI:
10.1042/BJ20031789
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center