Send to

Choose Destination
See comment in PubMed Commons below


Author information

AgBiotech Center, Rutgers University, New Brunswick, New Jersey 08903-0231, Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211.


Posttranslational modification of proteins by phosphorylation is a universal mechanism for regulating diverse biological functions. Recognition that many cellular proteins are reversibly phosphorylated in response to external stimuli or intracellular signals has generated an ongoing interest in identifying and characterizing plant protein kinases and protein phosphatases that modulate the phosphorylation status of proteins. This review discusses recent advances in our understanding of the structure, regulation, and function of plant protein phosphatases. Three major classes of enzymes have been reported in plants that are homologues of the mammalian type-1, -2A, and -2C protein serine/threonine phosphatases. Molecular genetic and biochemical studies reveal a role for some of these enzymes in signal transduction, cell cycle progression, and hormonal regulation. Studies also point to the presence of additional phosphatases in plants that are unrelated to these major classes.

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center