Send to

Choose Destination
See comment in PubMed Commons below


Author information

Botanisches Institut der Universitat zu Koln, Gyrhofstrasse 15, Koln, D-50931 Germany; e-mail:


During photosynthesis, energy from solar radiation is used to convert atmospheric carbon dioxide into intermediates that are used within and outside the chloroplast for a multitude of metabolic pathways. The daily fixed carbon is exported from the chloroplasts as triose phosphates and 3-phosphoglycerate. In contrast, nongreen plastids rely on the import of carbon, mainly hexose phosphates. Most organelles require the import of phosphoenolpyruvate as an immediate substrate for carbon to enter the shikimate pathway, leading to a variety of important secondary compounds. The envelope membrane of plastids contains specific translocators that are involved in these transport processes. Elucidation of the molecular structure of some of these translocators during the past few years has provided new insights in the functioning of particular translocators. This review focuses on the characterization of different classes of phosphate translocators in plastids that mediate the transport of the phosphorylated compounds in exchange with inorganic phosphate.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center