Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4222-7. Epub 2004 Mar 9.

Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity.

Author information

Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, USA.


The notorious resistance of melanoma cells to drug treatment can be overcome by expression of a 50-aa peptide derived from activating transcription factor 2 (ATF2(50-100)). Here we demonstrate that ATF2(50-100) induced apoptosis by sequestering ATF2 to the cytoplasm, thereby inhibiting its transcriptional activities. Furthermore, ATF2(50-100) binds to c-Jun N-terminal kinase (JNK) and increases its activity. Mutation within ATF2(50-100) that impairs association with JNK and the inhibition of JNK or c-Jun expression by RNA interference (RNAi) reduces the degree of ATF2(50-100)-induced apoptosis. In contrast, TAM67, a dominant negative of the Jun family of transcription factors, or JunD RNAi attenuates sensitization of melanoma cells expressing ATF2(50-100) to apoptosis after treatment with anisomycin, which is used as a model drug. Mutations within the JNK binding region of ATF2(50-100) or expression of TAM67 or JunD RNAi attenuates inhibition of melanoma's tumorigenicity by ATF2(50-100). We conclude that inhibition of ATF2 in concert with increased JNK/Jun and JunD activities is central for the sensitization of melanoma cells to apoptosis and inhibition of their tumorigenicity.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center