Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2004 Mar;88(6):1449-54.

Progressive sensorimotor impairment is not associated with reduced dopamine and high energy phosphate donors in a model of ataxia-telangiectasia.

Author information

1
Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Ontario, Canada. howard.mount@utoronto.ca

Abstract

Ataxia-telangiectasia (A-T) is a genetic disease, associated with progressive motor impairment and a lack of functional ATM protein. It has been reported that immunoreactive tyrosine hydroxylase and dopamine transporter are reduced in an Atm-/- mouse model of A-T. These observations led to a hypothesis that A-T is associated with loss of nigrostriatal dopamine and prompted the launch of clinical trials to evaluate a therapeutic utility of the anti-parkinsonian drug, l-DOPA. To test for dopamine depletion more directly, we measured regional levels of monoamines and their metabolites in the Atm-/- mouse brain. We also measured levels of NAD+, a cofactor for dopamine biosynthesis and substrate of the DNA damage surveillance enzyme, poly(ADP-ribose) polymerase (PARP). Constitutive activation of PARP has been posited to cause NAD+ depletion. We observed no reduction in monoamine transmitters and no depletion of NAD+, or other high energy phosphate donors in the adult Atm-/- cerebellum, striatum, or ventral mesencephalon. However, our studies did reveal a progressive sensorimotor impairment in Atm-/- mice that may serve as a relevant proxy for progressive neurological impairment in the human disease. Our results call into question the involvement of dopamine in A-T and the therapeutic strategy of enhancing dopaminergic function with l-DOPA.

PMID:
15009646
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center